Salmonella pathogenicity and host adaptation in chicken-associated serovars.
نویسندگان
چکیده
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
منابع مشابه
Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens
BACKGROUND Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chi...
متن کاملDifferentially Evolved Genes of Salmonella Pathogenicity Islands: Insights into the Mechanism of Host Specificity in Salmonella
BACKGROUND The species Salmonella enterica (S. enterica) includes many serovars that cause disease in avian and mammalian hosts. These serovars differ greatly in their host range and their degree of host adaptation. The host specificity of S. enterica serovars appears to be a complex phenomenon governed by multiple factors acting at different stages of the infection process, which makes identif...
متن کاملGenomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar typhimurium DNA microarray.
The genus Salmonella consists of over 2,200 serovars that differ in their host range and ability to cause disease despite their close genetic relatedness. The genetic factors that influence each serovar's level of host adaptation, how they evolved or were acquired, their influence on the evolution of each serovar, and the phylogenic relationships between the serovars are of great interest as th...
متن کاملComparative phenotypic and genotypic virulence of Salmonella strains isolated from Australian layer farms
There are over 2500 Salmonella enterica serovars that circulate globally. Of these, serovars those classified into subspecies I are the most common cause of human salmonellosis. Many subspecies I Salmonella serovars are routinely isolated from egg farm environments but are not frequently associated with causing disease in humans. In this study, virulence profiles were generated for 10 strains o...
متن کاملVirulotyping of seafood associated Salmonella enterica subsp. enterica isolated from Southwest coast of India
Infections due to seafood associated Salmonella serovars are a great risk to public health. It is known that genes involved in pathogenesis of Salmonella spp. are clustered within Salmonella pathogenicity islands. Therefore, this study was aimed at detecting the prevalence of 12 different virulence associated genes coded by 4 pathogenicity islands, namely, SPI-1, SPI-2, SPI-3 and SPI-5, among 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 77 4 شماره
صفحات -
تاریخ انتشار 2013